Frequency adjustment for loop A for single loop detector			
Dip Switch \#1	Dip Switch \#2	Loop frequency	
OFF	OFF	High	
ON	OFF	Mid High \quad [High -20\%]	
OFF	ON	Mid Low $\quad[$ High $-25 \%]$	
ON	ON	Low $\quad[$ High $-30 \%]$	

Dual Loop Configuration A

LED SIGNAL	- 1 Green LED shows when the module is powered - 2 Red LEDs give - the corresponding loop detection state in normal situation - the value of the oscillation frequency measurement or an error message on power ON			
	In normal situation the red LED stays ON as long as the loop detects any metallic object.			
	On power ON the sensor measures the oscillation frequency of each loop. The result of this measurement is displayed using the corresponding red LED. The amount of blinking indicates the tens value of the frequency. For example 4 short flashes correspond to a frequency between 40 kHz and 49 kHz . After this message the LED goes back to normal display. If the loop oscillation frequency falls outside the limits set between 20 kHz and 130 kHz the red LED displays an error message and the sensor activates the corresponding relay. The blinking frequency shows the type of error according to the next table. The sensor will stay in this state until the problem is cleared and the frequency goes to the right range.			
	Remark : The sensor launches automatically a learning process if the oscillation frequency changes more than 10% in comparison with the measurement value.			
	Loop frequency error		LED display	
	Oscillation frequency too LOW or loop open		LED blinking at 1 Hz	
	Oscillation frequency too HIGH		LED blinking faster at 2 Hz	
	Loop shorted or no oscillation		LED blinking slower at 0.5 Hz	
TROUBLESHOOTINGS	SYMPTOM	PROBABLE CAUSE		CORRECT ACTION
	The loop detector will not work The green LED is off	There is no power supply to the loop detector		Check power supply
	The loop detector will not work The red LED is flashing slowly (0.5 Hz)	The corresponding loop is shorted		Check the loop cable
	The loop detector will not work The red LED blinks at either 1 Hz or 2 Hz	The frequency of oscillation falls outside the allowed range		Adjust frequency with dip switches or change loop turns
\%	The loop LED is detecting properly but the contact is not made	Bad connection of the relay contacts		Check relay connections
	Dip switches 5 to 8 are not responding properly	Their function varies according to dip switch \#10 setting		Check the appropriate loop mode required and adjust dip switch \#10

(i) The declaration of conformity and other technical documentation are available on our website or can be requested by phone or mail. Automatismi Benincà SpA - Via Capitello, 45 - 36066 Sandrigo (VI) - tel. +390444751030 - fax +390444751188 - cell. +393479744730 - http://wnw.beninca.com

LOOPS
 NSTALLATION
 TIPS

A. CAble Specifications for Loop and feeder
 - $1.5 \mathrm{~mm}^{2}$ cross section area
 - Multi-strand cable
 Insulation material .PVC or slicone
 - Feeder for long runs used for foil screened cable is recommended (earth at equipment end only)
 - The feeder cable must be firmly fixed to avoid any false detection (max length : 100 m)
 - Waterproof cable junction box is required

- With two adjacent loops connected to a dual channel sensor, it is possible for these loops to share a common slot, if so required. As the channels are multiplexed, no interference will occur
- Avoid large loops or long feeder ($\max 100 \mathrm{~m}$), the sensitivity will be affected

C. DEtermination of the number of Loop turns

WARNING:

For conformity reasons, in any situation, the antenna factor defined as the loop surface multiplied by the number of turns should not exceed $N A=20$
For example, if $L=2 m, E a=1 m$ and the number of turns $=4$, then the $N A=2 \times 1 \times 4=8<20$
Find hereafter the recommended values for the turns:

Area	Number of turns
$<3 \mathrm{~m}^{2}$	4
$3-5 \mathrm{~m}^{2}$	3
$6-10 \mathrm{~m}^{2}$	2

D. SLOT DEPTH

ADUUSTMENIS A. THE 3 CONFGURATIONS

- Configuration \# 1 : single loop detector
- Configuration \# 2 : dual loop detector in independent mode
- Configuration \# 3 : dual loop detector in combined mode

B. POTENTIOMETERS

PRESENCE TIME

- A potentiometer for adjustment of the maximum duration of a presence detection from 1 min to infinity
- A potentiometer for adjustment of the linear sensitivity (Δf) for the loop A from 0.005% to 0.5%
- A potentiometer for adjustment of the linear sensitivity (Δf) for the loop B: from 0.005\% to 0.5%

C. RELAY CONFIGURATIONS (Dip Switch \#3)

The loop A activates the relay A and the loop B activates the relay B. With the dual loops in combined mode the relay A provides the presence detection and the relay B provides the movement direction

	ACTIVE MODE (dip switch \#3 OFF)	PASSIVE MODE (dip switch \#3 OFF)
Detection	$\mathrm{COM} \longrightarrow \mathrm{NC}^{\text {- }}$	COM - ${ }^{\text {NO}}$
No Detection	$\mathrm{COM} 2 \cdot \mathrm{NO}$	COM $-{ }^{\text {- }}$ NC

D. DIP SWITCHES

After each dip switch change the sensor launches a learning process

Dip Switch \#1	Frequency Adjustments of Loop A
Dip Switch \#2	Frequency Adjustments of Loop A (with single loop) or Loop B (with dual loops)
Dip Switch \#3	Relay configuration : active or passive.
Dip Switch \#4	Automatic Sensitivity Boost (ASB option) [recommended for better trucks detection] : During a detection the sensitivity increases automatically to 8 times the presest sensitivity given by the sensitivity potentiometer adjustment. ti ilimited to the maximum sensitivity ($\Delta f=0.005 \%$). It goes back to the preset value after detection stops.
Dip Switch \#5	Relay A function : presence or pulse (not used with dual loop in combined mode)

	Configuration \#1 Single loop		Configuration \#2 Dual loop in independent mode		Configuration \#3 Dual loop in combined mode	
	OFF	ON	OFF	ON	OFF	ON
DS\#1	See next table		High (loop A)	Low (loop A) [High -30\%]	High (loop A)	$\begin{aligned} & \text { Low (loop A) } \\ & \text { [High }-30 \% \text {] } \end{aligned}$
DS\#2			High (loop B)	$\begin{aligned} & \text { Low (loop B) } \\ & {[\text { High }-30 \%]} \end{aligned}$	High (loop B)	$\begin{aligned} & \text { Low (loop B) } \\ & \text { [High -30\%] } \end{aligned}$
DS\#3	Active mode	Passive mode	Active mode	Passive mode	Active mode	Passive mode
DS\#4	ASB OFF	ASB ON	ASB OFF	ASB ON	ASB OFF	ASB ON
DS\#5	Relay A: Presence on loop A	Relay A : Pulse on loop A	Relay A: Presence on loop A	Relay A : Pulse on loop A	Not used	Not used
DS\#6	Relay A : Pulse on loop A entry	Relay A : Pulse on loop A exit	Relay A : Pulse on loop A entry	Relay A : Pulse on loop A exit	Relay B: non-directional mode	Relay B: directional $A \rightarrow B$ mode
DS\#7	Relay B: Presence on loop A	Relay B : Pulse on loop A	Relay B: Presence on loop B	Relay B : Pulse on loop B	Relay B: Pulse on loop B	Relay B : Pulse on loop A
DS\#8	Relay B : Pulse on loop A entry	Relay B: Pulse on loopA exit	Relay B: Pulse on loop B entry	Relay B: Pulse on loop B exit	Relay B: Pulse on loop entry	Relay B: Pulse on loop exit
DS\#9	100 ms	500 ms	100 ms	500 ms	100 ms	500 ms
DS\#10	Not used	Not used	Independent mode	Combined mode	Independent mode	Combined mode

